Tentamen Functionaalanalyse 10/11/04

1. Let $F: L^2[0,\pi] \to \mathbb{C}$ be defined by

$$F(f) := \int_0^{\pi} \sin(t) f(t) dt, \qquad f \in L^2[0, \pi].$$

- (a) Is F linear? Justify the answer!
- (b) Show that F is bounded. Determine ||F||.
- (c) Let $G:L^2[0,\pi]\to\mathbb{C}$ be a bounded linear functional defined on $L^2[0,\pi]$. Does there exist some $g\in L^2[0,\pi]$ such that G is of the form

$$G(f) = \pi^2 \int_0^{\pi} e^{it} f(t)g(t)dt, \quad f \in L^2[0, \pi]?$$

Justify the answer!

2. Solve the integral equation

$$x(t) + \int_0^{\pi} x(s) \cos(t-s) ds = \cos t + 3 \sin t, \quad x \in C[0,\pi].$$

3. Let E be an infinite-dimensional normed space. Let $x,y\in E$ be linearly independent with $\|x\|=\|y\|=1$, and let $U=\operatorname{span}\{x,y\}$. For $\beta\in\mathbb{C}$, let $\ell_\beta:U\to\mathbb{C}$ be the linear functional on U such that $\ell_\beta(x)=3i+2$ and $\ell_\beta(y)=\beta$.

Does there exist some $\beta_0 \in \mathbb{C}$ such that $|\ell_{\beta_0}(z)| \leq \sqrt{13} ||z||$ for all $z \in U$?

Does there exist some $L \in E'$ (E' is the dual space of E) and some $\beta \in \mathbb{C}$ such that ℓ_{β} is the restriction of L on U: $L|_{U} = \ell_{\beta}$, and

- (a) ||L|| = 3?
- (b) $||L|| = \sqrt{13}$?
- (c) $||L|| \ge 23$?

Justify the answers!

4. Provide the linear space C[0,1] with

$$||x|| := ||x||_{\infty} + 2 \int_0^1 |x(t)|dt + 3|x(1)|, \quad x \in C[0,1].$$

- (a) Show that $\|\cdot\|$ is a norm on C[0,1].
- (b) Show that C[0,1] with the norm $\|\cdot\|$ is a complete space.
- (c) Show that the norms $\|\cdot\|_{\infty}$ and $\|\cdot\|$ are equivalent on C[0,1].